TOWN HALL WORKSHOPS
July 27, 28

LAREDO WATER
A 50 YEAR MASTER PLAN

A project of the City of Laredo

In conjunction with
Welcome!

Introductions
- City Council in attendance
- Other Dignitaries
- City Management
- City Staff
- Consultant Teams

Housekeeping Items
- Facebook Live
- Laredowater.org
- Q&A - Please register at laredowater.org
- Monitoring chat and streams to incorporate questions & comments

Background
- Council action
- Previous Master Plans
- Secondary Water
Laredo City Council Members

PETE SAENZ
MAYOR

RUDY GONZALEZ, JR.
DISTRICT I

VIDAL RODRIGUEZ
DISTRICT II

MERCURIO MARTINEZ III
DISTRICT III

ALBERTO TORRES JR.
DISTRICT IV

RUBEN GUTIERREZ JR.
DISTRICT V

DR. MARTE A. MARTINEZ
DISTRICT VI

VANESSA PEREZ
DISTRICT VII

ALYSSA CIGARROA
DISTRICT VIII

LAREDO WATER
A 50 YEAR MASTER PLAN

Loganwood, Andrews & Newman, Inc.
A LEED® & GREEN COMPANY
Laredo City Management

Robert Eads
ICMA Credentialed Manager
City Manager

Rosario C. Cabello
Deputy City Manager

Riazul I. Mia, PE
Assistant City Manager

Kristina Laurel Hale
Assistant City Manager
LAN Project Team

- J. Tom Ray, PE, D. WRE
- Charles Shumate, PE
- Lisa Lattu, PE, AICP
- Russ Ford, Senior Associate
- Thomas W. Mountz, PE, D.WRE, CFM

Lockwood, Andrews & Newnam, Inc.
Ardurra Project Team
- Chris Canonico, PE
- Dan Leyendecker, PE
- Hector Pena, PE
- Ignacio Hinojosa, PE
Laredo Water Cycle
Integrated Water Master Plan

Major Components & IWMP
Hydraulic Modeling effort
Review of Progress to date

Charles Shumate, PE
What are the Master Plan Goals?

- Water & Wastewater Infrastructure for Laredo’s Growth
- Coordinated Efforts with City Staff and Previous Work
- Prepare For Water Supply Vulnerabilities / Emergency Outages
- Understand Laredo’s Financial Impacts & Financing Needs
- Work with the People to develop a Community Master Plan
Water system dates back to 1882

Most water is from the Rio Grande River
 ● Well water is limited in quantity & quality

Previous Water Master Plan 2011; Updated 2015

State of Texas Water Development Board
plans for future population and water demand
 ● Laredo is in Region M
Water Purification & Delivery

- Treated & Disinfected
- Distributed to
- Additional Pumps
- Additional Storage
- Homes & Businesses

River Water
Existing Water System
~ Laredo Owns and Operates ~

- Two Surface Water Treatment Plants
- Eight Booster Stations
- Nine Elevated Tanks
- Ten Service Areas
 - PRVs and Isolation Valves Control Water Flow / Direction

- More than 1,000 Miles of Water Pipe
 - from 2-inch water lines to 60-inch water transmission mains
Water or Hydraulic Modeling

A Computer Water Model

- Simulates the Above-ground & Below-ground parts of the Systems
- Evaluates System Disruptions
- Virtually Tests Improvements
 - Storage (where and how much)
 - Pumps (redirecting flow / improving pressure)
 - Water Lines / Connections (where, how big)
 - Operational Changes (timing and sequences)
- Helps Compare Costs and Benefits of Alternatives
 For Today and Prepare for the Future
Update the city’s model
- 2015 model updated to current conditions
- New customers, tanks, pumps, pipes

Verify the model (model results match actual system)
- System flows, tank levels, and pressures
- Pump controls

Apply verified model to the system
- S.Laredo, ability to fill storage, simplify and improve efficiency of operation
- Future growth

Identify efficient / affordable improvements
Model Report

- Document the Model Development
- Identify System Needs
 - Water Capacity
 - Water Pressure
- Propose Capital Improvements
 - Short Term
 - Long Term
- Develop Conceptual or Planning Costs
 - Dynamic / Updateable
Future Water System

Major Projects:

- **“Outer Loop” Water Transmission Pipeline**
 - first segments to bring water from El Pico Water Treatment Plant

- **Water Plant Improvements**
 - to maintain higher pressures as water first enters the system

- **Pump Station Improvements**
 - pressure and storage / flow control of the water system across Laredo
Integrated Water Master Plan

Population & Water Demands

Water Supply Alternatives

J. Tom Ray, PE, D. WRE

Thomas W. Mountz, PE, D.WRE, CFM
Water Supply Demand & Alternatives

Preparing for Future Demands & Possible Emergency Outages

- Region M - Water Supply Plan
- Existing Water Supply & Sources
- Projected Water Demands
 - Setting Supplemental Supply Goal
 - Setting Emergency Supply Goal
- Identify & Evaluate Alternatives to meet Supply Goals
Water Supply Functions Considered

Emergency Water Supply
- Supply needed for emergencies caused by interruption of Laredo’s water supply source (Rio Grande River diversion)

Supplemental Supply
- Supply needed to meet future water demands resulting from Laredo’s growth and water system expansion in the future
Alternative Water Sources

Prepare For Future Water Demands (>2040)

Supply Goals:

Supplemental Water Supply = 22,000 Acre-feet/year
20 MGD

Prepare For Water Supply Vulnerabilities / Emergency Outages

Emergency Water Supply = 37,500 Acre-feet/year
33.5 MGD
Laredo’s Population Projection
Laredo has prepared for future water demands:

Current Supply = 61,825 Acre-feet/year

(should meet demands through the year 2040)

Laredo is preparing for both future growth (beyond 2040) & emergency outages.
2021 Regional Water Plan

Water Demand Projections for 2020 - 2070

- 2020: 42,028 acre-feet
- 2030: 50,530 acre-feet
- 2040: 58,812 acre-feet
- 2050: 66,591 acre-feet
- 2060: 74,190 acre-feet
- 2070: 81,096 acre-feet

Laredo Current Water Supply = 24
Current Water Supply vs Projected Water Demand
Water Demand vs Supply

<table>
<thead>
<tr>
<th>LAREDO</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
<th>2060</th>
<th>2070</th>
</tr>
</thead>
<tbody>
<tr>
<td>WUG Demand</td>
<td>42,028</td>
<td>50,530</td>
<td>58,812</td>
<td>66,591</td>
<td>74,190</td>
<td>81,096</td>
</tr>
<tr>
<td>Webb County Irrigation – Contract Demand</td>
<td>1,657</td>
<td>1,656</td>
<td>1,656</td>
<td>1,655</td>
<td>1,655</td>
<td>1,655</td>
</tr>
<tr>
<td>Webb County Manufacturing – Contract Demand</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Webb County Mining – Contract Demand</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>WWP Demand</td>
<td>43,851</td>
<td>52,352</td>
<td>60,634</td>
<td>68,412</td>
<td>76,011</td>
<td>82,917</td>
</tr>
<tr>
<td>WWP Supplies</td>
<td>61,827</td>
<td>61,826</td>
<td>61,826</td>
<td>61,825</td>
<td>61,825</td>
<td>61,825</td>
</tr>
<tr>
<td>WWP Need/Surplus</td>
<td>17,976</td>
<td>9,474</td>
<td>1,192</td>
<td>-6,587</td>
<td>-14,186</td>
<td>-21,092</td>
</tr>
</tbody>
</table>
Alternative Water Sources

Prepare For Water Supply
- Vulnerabilities /
- Emergency Outages

- Lake Casa Blanca
- Groundwater
 - Local (Webb County)
 - Imported (further places)
 - Brackish (needs additional treatment)
- Reuse/Reclaimed Water
- Aquifer Storage & Recovery (ASR)
- Additional Water Rights (Rio Grande River)
Lake Casa Blanca

Status:
- Evaluations & Records research completed
- Technical memo being prepared

Potential Use:
- Direct Emergency Supply use very limited
- Limited indirect reuse storage for additional water supply

Background:
- Dam and Lake constructed by Webb County in the 1950s with uncontrolled spillway
- TCEQ Dam Permit Records: 1680 acres surface area, 20,000 acre-feet storage volume, 36 feet max depth

Findings:
- Latest 2007 Dam Rehab H&H Field Study showed: 1650 acres surface area, +/- 11,000 acre-feet vol., +/- 27 feet max depth

Conclusion/Recommendations:
- Limited volume potential in reservoir vs. daily need or emergency need
- Significant evaporation reduces storage capacity (+/- 5000 ac-ft)
- Restoration of capacity by dredging is cost prohibitive
Status: Initial evaluation complete, LAN reviewing draft; opinion of cost prepared

Locations: Webb County

Northern Webb County Wells
adjacent to Dimmit County approximately 40 miles from the Laredo system connection requiring approximately 47 miles of conveyance pipeline

Potential Use:
- Supplemental supply, up to 25,000 AF/Yr (22.3 MGD)
- Emergency supply, up to 33,750 AF/Yr (33.5 MGD)

Findings:
Would meet the long-term future supply need (Suppl. Goal)

Recommendations:
Additional investigations, including well tests, needed to verify preliminary findings

Northwestern Webb County Wells
Water quantity and quality being investigated; results expected next month

Potential Use:
Supply potential to be determined

Findings:
Test well information expected next month and provide estimated 243 days at the Emergency Goal level.
Brackish Groundwater

Status:
- Evaluation complete, based on TWDB available information; draft report being reviewed by LAN

Background:
- TWDB has identified potential brackish production zones in Webb County. More study is needed to assess potential production. *(Laredo’s Santa Isabel Groundwater Reverse Osmosis plant draws from this brackish water zone.)*

Findings:
- Distance varies - Carrizo, Queen City & Sparta locations in and near Laredo
 - Cost Estimates also vary, depends on well depth & location
 - Water Quality - slightly saline (1,000 – 3,000 mg/l TDS) to moderate saline (3,000 – 10,000 mg/l)
 - Treatment – requires advanced (demineralization) and blending

- Closest proximity has limited quantity and poor quality *(likely requiring advance treatment and/or blending)* and is not sufficient supply to meet either Emergency or Supplement water supply goals.
Aquifer Storage & Recovery

Status:
- Evaluation complete; draft report being reviewed by LAN

Background:
- In 1996, with TWDB grant, had CH2M Hill investigate ASR feasibility to help manage water needs during peak and drought conditions.
- Based on CH2M Hill report:
 - Investigated shallow aquifer within the city limits
 - Slow injection & recovery rates resulting in low production
 - Water quality of this local aquifer could result in well plugging
 - Additional studies needed to assess ASR potential
 - No recommendations in current Region M plan

Findings:
- Based on prior studies, ASR supply is not expected to meet either Supplement or Emergency water supply goals
“Imported” Groundwater Supply

<table>
<thead>
<tr>
<th></th>
<th>Dimmit County Well Fields</th>
<th>Kinney County Project</th>
<th>Val Verde County Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply quantity</td>
<td>40 MGD, fresh groundwater</td>
<td>22 MGD fresh groundwater</td>
<td>40 – 90 MGD fresh groundwater</td>
</tr>
<tr>
<td>Distance</td>
<td>70 miles</td>
<td>150 miles</td>
<td>150 miles</td>
</tr>
<tr>
<td>Quality</td>
<td>300 mg/l TDS</td>
<td>230 -390 mg/l TDS</td>
<td>~300 mg/l TDS</td>
</tr>
<tr>
<td>Treatment</td>
<td>None (blending only)</td>
<td>None (blending only)</td>
<td>None (blending only)</td>
</tr>
</tbody>
</table>
South Laredo WWTP Indirect Potable Reuse

Status:
- Identified and recently updated in the Region M Regional Water Plan

Background:
- This indirect reuse project will pump treated effluent from the South Laredo WWTP to the Laredo Jefferson WTP for additional treatment.

- Phased project:
 - Phase 1 – 3,360 AF/Yr (3 MGD) – 2040
 - Phase 2 – 6,720 AF/Yr (6 MGD) – 2060

Findings:
- Cost effective, excellent planning ahead
- Limited supply and long-term future use
- Will not meet Supplemental or Emergency goals
Other Surface Water (Rio Grande)

Status:
- Kirk Kennedy is preparing a draft report for LAN review

Background:
- The water rights system for the Rio Grande is unique. The Rio Grande River water rights are fully appropriated; the Rio Grande Watermaster oversees the use of water rights, diversions.

Findings:
- Based on initial discussions, additional surface water development in the Rio Grande basin is expected to be very limited although it is acquisition of existing water rights is permitted.
Current Cost of production per 1000 Gallons = $1.90 (approximately)
Current Cost of production per 1000 Gallons = $1.90 (approximately)
Other Evaluation Factors

Primary Set - Water Supply Alternatives

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Lake Casa Blanca - no dredge</th>
<th>Lake Casa Blanca - dredge</th>
<th>South arroyo Reuse PHP</th>
<th>South Laredo Reuse PHZ</th>
<th>North Webb Co GW</th>
<th>Dimmit Co GW</th>
<th>Val Verde Co GW</th>
<th>Add n Rio Grande Wt</th>
<th>Other Rio Grande/ Falcon Reservoir</th>
<th>Laredo Water W</th>
<th>Bracken GW</th>
<th>Aquifer Storage & Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Water Supply</td>
<td></td>
</tr>
<tr>
<td>a) Days Available</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>b) Phasing Options Available</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Year Potentially Available</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Cost of Supply (unit cost)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Capital Cost</td>
<td>5</td>
<td>2.0</td>
<td>4.6</td>
<td>4.8</td>
<td>4.8</td>
<td>2.8</td>
<td>0.8</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Life Cycle Cost</td>
<td>5</td>
<td>1.0</td>
<td>4.6</td>
<td>4.9</td>
<td>4.7</td>
<td>2.8</td>
<td>0.9</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Affordability</td>
<td>5</td>
<td>2.0</td>
<td>1.0</td>
<td>5.0</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Supply Reliability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>a) Potential Interruption/Curtailment</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>2.5</td>
<td>2</td>
<td>2.2</td>
<td>2.3</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Accessibility (conveyance distance)</td>
<td>5</td>
<td>4.8</td>
<td>4.8</td>
<td>4.7</td>
<td>4.7</td>
<td>3.7</td>
<td>2.7</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Water quality (treatment req'd)</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Environmental Concerns</td>
<td></td>
</tr>
<tr>
<td>5) Water Rights Issues and Constraints</td>
<td></td>
</tr>
<tr>
<td>6) Property Acquisition Anticipated</td>
<td></td>
</tr>
<tr>
<td>7) Contract Requirements</td>
<td></td>
</tr>
<tr>
<td>8) Public Acceptability</td>
<td></td>
</tr>
<tr>
<td>TOTAL SCORE</td>
<td>28.2</td>
<td>34.5</td>
<td>33.8</td>
<td>29.9</td>
<td>37.5</td>
<td>34.6</td>
<td>31.4</td>
<td>25</td>
<td>21</td>
<td>14</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>
Next Steps

🧱 Prioritizing 20 Years of CIP Projects

 - Cost and timing for projects based on need and financing

🧱 Laredo Specific Financial Forecasts and Models

 - Loans / Grants and Other Funding & Cost Sharing

 - Continue & Update Rate Study and Financial Plans (Willdan)
Ongoing Work

Capital Improvement Plan

Path from the Existing System to the Future System

- Reviewing & Updating Previously Planned Projects
- Evaluating New or Alternative Projects
- Looking at Future Growth & Needs
- Reviewing Costs and Timing for All Projects
Planned Water Capital Improvements

- El Pico Water Treatment Plant
 - Repairs and Reliability Improvements
- Lyon St. Booster Station
 - Ground Storage Tank Demolition & Replacement
- Downtown Waterline Replacements
- “Outer Loop” Water Pipeline to bring water into the City
- Improvements at Cuatro Vientos, Northwest Elevated Storage Tank (La Bota), East Corridor, Del Mar, Airport Areas
Integrated Wastewater Master Plan

- IWWMP Overview
- Review of Progress to Date
- WW System Overview

Hector Pena, PE
Objectives

- Evaluate capacity of the existing wastewater system under current and future projected growth scenarios.

- Develop sustainable infrastructure for long-term growth.

- Provide a roadmap for resilient, long-term water treatment.
Laredo Water Cycle
Wastewater System Overview

- 900 Miles of Sewer Lines (Laredo to Kansas City, Missouri)
- 71 Lift Stations
- 13,000 Manholes
- 6 Wastewater Treatment Plants
- 35.3 MGD Design Capacity/19 MGD Average Daily Flow
Collection System Baseline

From Customer to Treatment Facility

900 MILES OF SEWER LINES

829 MILES OF GRAVITY MAINS

71 LIFT STATIONS

59 MILES OF FORCE MAINS

13,000 MANHOLES
WW Treatment Flow Diagram
Wastewater Treatment Plants
50 Year Projection MGD

26 MGD increase at $8 - 10/gal is $208M - 260M (2020$) in treatment capacity alone.
Wastewater Master Plan Process

1. Facilities Inventory and Data Collection
2. Review Design Criteria and Level of Service
 - Wastewater Flow Projections
 - Wastewater Collection System Analysis
 - Asset Management
3. Model Update
4. Alternatives Evaluation
5. Integrated CIP and Master Planning Report
Integrated Wastewater Master Plan

Flow Determination

Wastewater Collection System Analysis & Asset Management

Existing Capital Improvement Plan

Facilities Inventory and Data Collection

Review Design Criteria and Level of Service

Wastewater Flow Projections

Wastewater Collection System Analysis

Asset Management

Model Update

Alternatives Evaluation

Integrated CIP and Master Planning Report

Ignacio Hinojosa, PE
Flow Determination

- Set a baseline condition/existing flow conditions (2020)

- Project flows for five planning horizons 2030, 2040, 2050, 2060 and 2070

- Use flow projections to develop 50 year plan:
 - Alternatives/Scenarios
 - Capital Improvement Plan
Existing Flow Estimation

- Identified Existing Sewersheds and Subbasins

- Average Daily Dry Weather Flow (no rain)
 - Entire city
 - By sewershed basin
 - Per capita

- Gallon Per Capita Per Day (GPCD) calculated for three main service areas
Flow Projections (Future)

Considerations
- Land Use Layers within City Limits and towards Extraterritorial Jurisdiction (ETJ)
- Region M Population Projections, Metropolitan Transportation Plan (MTP), Major Infrastructure Projects, etc.

Results
- Alternatives/Scenarios for Ultimate Build out (50 Year Plan)
- Capital Improvement Plan (CIP) for Near-Term, Intermediate, Long Term and Ultimate Build Out
Summary of current assets and life expectancy

Develop Renewal Cost for the current assets

Use these costs to develop a long-term CIP
WW Collection System Analysis

Gravity Sewer Mains (6” to 24”)

45% of the System was Installed in the 80’s or Before

Pipe Material has a Significant Impact on Life-Cycle Costs

Installation Era

Before 1980
28.1%

1980s
17.0%

2000s
19.6%

2010s
14.8%

2020s
1.6%

Material Type

PVC
62.8%

VCP/Other
37.2%
Today 30% of the Collection System has 10-years or less of remaining service life.

Without accounting for future growth, an annual Renewal of 1% is required to maintain a system no less than 10-year service life expectancy.
Work Orders (WO): Odor Complaints, Sewer Pipe Breaks, Sewer Backups, Pump Failures at Lift Stations, etc.

Weekly Average

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Orders</td>
<td>30</td>
<td>23</td>
</tr>
</tbody>
</table>

Monthly Average

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Orders</td>
<td>155</td>
<td>99</td>
</tr>
</tbody>
</table>

Annual Totals

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Orders</td>
<td>1703</td>
<td>1192</td>
</tr>
</tbody>
</table>
Existing Wastewater CIP

Wastewater Treatment: $63.5 M
Collection System: $41.2 M
Total Investment: $104.7 M
Recently Completed:

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Laredo WWTP 12 to 18 MGD Expansion (2020)</td>
<td>$21.5 M</td>
</tr>
<tr>
<td>Unitec WWTP Improvements (2019)</td>
<td>$1.9 M</td>
</tr>
</tbody>
</table>

In Construction:

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Chacon Interceptor</td>
<td>$4 M</td>
</tr>
<tr>
<td>Zacate Line Rehab (Canal St. to Zacate Creek)</td>
<td>$2 M</td>
</tr>
<tr>
<td>Flores St Improvements</td>
<td>$1.2 M</td>
</tr>
<tr>
<td>Unitec Phase I Expansion (0.18 to 0.36 MGD)</td>
<td>$3.9 M</td>
</tr>
</tbody>
</table>
Next Steps

- Facilities Inventory and Data Collection
- Review Design Criteria and Level of Service
 - Wastewater Flow Projections
 - Wastewater Collection System Analysis
 - Asset Management
- Model Update
- Alternatives Evaluation
- Integrated CIP and Master Planning Report
If you have any questions, we’ll gladly answer them now.
What City Council District Do You Live In?

District 7 - 28%
District 6 - 18%
District 5 - 15%
District 1 - 10%
District 2 - 9%
District 8 - 7%
District 4 - 7%
District 3 - 6%
What Type Of Residence Do You Live In?

- **House** - 81%
- **Apartment** - 12%
- **Mobile Home** - 5%
- **Townhome/Condominium** - 2%
Do You Own Or Rent?

- Own: 79%
- Rent: 21%
How Many People Live In The Household?

- 3 people - 23%
- 4 people - 22%
- 2 people - 21%
- 5 people - 17%
- 6 people - 8%
- 1 person - 6%
- 7 people - 2%
- 8 people - 1%
The City Responded To The Boil Water Notice Adequately

Strongly Disagree (1) - 19%
Disagree (2) - 15%
Neutral (3) - 32%
Agree (4) - 24%
Strongly Agree (5) - 11%

results shown are in reference to the 2019 Boil Water Notice
How Long After The Boil Water Notice Did It Take Before You Stopped Boiling The Water And Resumed Drinking Tap Water?

I have not returned to drinking municipal water - 34%

1 week - 24%

1 month - 19%

I installed a water filtration system - 16%

6 months - 7%

results shown are in reference to the 2019 Boil Water Notice
Ratings Regarding Water Quality

<table>
<thead>
<tr>
<th></th>
<th>★</th>
<th>★★</th>
<th>★★★</th>
<th>★★★★</th>
<th>★★★★★</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taste</td>
<td>20%</td>
<td>13%</td>
<td>26%</td>
<td>25%</td>
<td>13%</td>
</tr>
<tr>
<td>Color</td>
<td>10%</td>
<td>13%</td>
<td>24%</td>
<td>28%</td>
<td>23%</td>
</tr>
<tr>
<td>Clarity</td>
<td>10%</td>
<td>14%</td>
<td>28%</td>
<td>24%</td>
<td>22%</td>
</tr>
<tr>
<td>Smell</td>
<td>20%</td>
<td>17%</td>
<td>26%</td>
<td>17%</td>
<td>19%</td>
</tr>
<tr>
<td>Safety</td>
<td>21%</td>
<td>13%</td>
<td>25%</td>
<td>19%</td>
<td>19%</td>
</tr>
<tr>
<td>Overall Quality</td>
<td>16%</td>
<td>15%</td>
<td>27%</td>
<td>21%</td>
<td>19%</td>
</tr>
</tbody>
</table>
Have You Experienced Water Pressure Fluctuation?

Yes - 51%

No - 49%
Roughly What Period Of The Day Does It Fluctuate?

- Morning - 27%
- Late Afternoon - 24%
- Early Evening - 23%
- Early Afternoon - 14%
- Late at Night - 12%
Do You Think The City Should Invest In A Secondary Water Source, Even Though It May Raise Water Rates?

- **Yes** - 42%
- **No** - 10%
- **Depends on the cost** - 48%
Do You Believe That You Are Getting A Good Value For Your Current Water And Wastewater Rates?

- Yes - 37%
- No - 38%
- I Don’t Know - 25%
How Satisfied Are You With The Current Billings Process?

- Very Unsatisfied (1) - 11%
- Unsatisfied (2) - 13%
- Neutral (3) - 41%
- Satisfied (4) - 23%
- Very Satisfied (5) - 13%
Stay Connected

SIGN UP FOR OUR EMAIL NEWSLETTER AT LAREDOWATER.ORG

@Laredo Water
@LaredoWater
@LaredoWater
Laredo Water
Surveys & Drawings

Deadlines for surveys and drawings extended.

Visit www.laredowater.org to participate in our survey.

- Completion of the survey automatically enters you in a drawing to win one of ten 4k UHD Smart TV’s.
THANK YOU!

LAREDO WATER
A 50 YEAR MASTER PLAN

A project of the City of Laredo

In conjunction with